给出一个整数K和一个无序数组A,A的元素为N个互不相同的整数,找出数组A中所有和等于K的数对。例如K = 8,数组A:{-1,6,5,3,4,2,9,0,8},所有和等于8的数对包括(-1,9),(0,8),(2,6),(3,5)。
Input
第1行:用空格隔开的2个数,K N,N为A数组的长度。(2 <= N <= 50000,-10^9 <= K <= 10^9)
第2 - N + 1行:A数组的N个元素。(-10^9 <= A[i] <= 10^9)
Output
第1 - M行:每行2个数,要求较小的数在前面,并且这M个数对按照较小的数升序排列。
如果不存在任何一组解则输出:No Solution。
Input示例
8 9
-1
6
5
3
4
2
9
0
8
Output示例
-1 9
0 8
2 6
3 5
一般达到1亿次以上,就会超时。
二分法代码:
#include<iostream>
#include<algorithm>
#define MAXN 100010
using namespace std;
int a[MAXN];
int BinarySearch(int a[], int n, int k)
{
int left = 0;
int right = n - 1;
int flag = 0;
while(left <= right)
{
int mid = left + (right - left)/2;
if(a[mid] == k)
{
flag = 1;
break;
}
else if(a[mid] > k)
right = mid - 1;
else
left = mid + 1;
}
return flag;
}
int main()
{
int n,m,flag=0;
cin >> m >> n;
for(int i = 0; i < n; ++i)
cin >> a[i];
sort(a,a+n);
for(int i = 0; i < n; ++ i)
{
int k = m - a[i];
// cout << k << endl;
if(BinarySearch(a,n,k))
{
flag = 1;
if(a[i] == k && a[i] == a[i+1]) //注意两个数相等,并且和刚好为m的情况,此时只需要输出一组数据即可
{
cout << a[i] << " " << k << endl;
break;
}
if(a[i] >= m/2) break;
cout << a[i] << " " << k << endl;
}
}
if(flag == 0)
cout << "No Solution" << endl;
return 0;
}
解法3的速度要更快一些。如果a[i]+a[j]>m,由于a[]是从小到大的有序序列,因此肯定a[j]大了,所以需要j往前移动一位。
#include<iostream>
#include<algorithm>
#define MAXN 100010
using namespace std;
int a[MAXN];
int main()
{
int n,m;
cin >> m >> n;
for(int i = 0; i < n; ++ i)
cin >> a[i];
sort(a,a+n);
int i = 0;
int j = n - 1;
int flag = 0;
while(i < j)//不能加等号,否则会出现输出m/2的情况
{
int k = a[i] + a[j];
if( k == m)
{
cout << a[i++] << " " << a[j--] << endl;//相等的时候记得i和j要更新,否则会一直循环
flag = 1;
}
else if( k > m)//说明a[j]太大了
-- j;
else
++ i;
}
if(!flag)
cout << "No Solution" << endl;
}