11.4 找一对数

给出一个整数K和一个无序数组A,A的元素为N个互不相同的整数,找出数组A中所有和等于K的数对。例如K = 8,数组A:{-1,6,5,3,4,2,9,0,8},所有和等于8的数对包括(-1,9),(0,8),(2,6),(3,5)。 
Input 
第1行:用空格隔开的2个数,K N,N为A数组的长度。(2 <= N <= 50000,-10^9 <= K <= 10^9) 
第2 - N + 1行:A数组的N个元素。(-10^9 <= A[i] <= 10^9) 
Output 
第1 - M行:每行2个数,要求较小的数在前面,并且这M个数对按照较小的数升序排列。 
如果不存在任何一组解则输出:No Solution。 
Input示例 
8 9 
-1 








Output示例 
-1 9 
0 8 
2 6 
3 5

一般达到1亿次以上,就会超时。

二分法代码:

#include<iostream>
#include<algorithm>
#define MAXN 100010
using namespace std;
int a[MAXN];

int BinarySearch(int a[], int n, int k)
{
	int left = 0;
	int right = n - 1;
	int flag = 0;
	while(left <= right)
	{
		int mid = left + (right - left)/2;
		if(a[mid] == k)  
		{
			flag = 1;
			break;
		}
		else if(a[mid] > k)
			right = mid - 1;
		else
			left = mid + 1;
	}
	return flag;
}

int main()
{
	int n,m,flag=0;
	cin >> m >> n;
	for(int i = 0; i < n; ++i)
		cin >> a[i];
	sort(a,a+n);
	for(int i = 0; i < n; ++ i)
	{
		int k = m - a[i];
	//	cout << k << endl;
		if(BinarySearch(a,n,k))
		{
			flag = 1;
			if(a[i] == k && a[i] == a[i+1]) //注意两个数相等,并且和刚好为m的情况,此时只需要输出一组数据即可 
			{
				cout << a[i] << " " << k << endl;
				break;
			}
			if(a[i] >= m/2) break;
			cout << a[i] << " " << k << endl;			
		}
		 
	}
	if(flag == 0)
		cout << "No Solution" << endl;
	return 0;
}

 

解法3的速度要更快一些。如果a[i]+a[j]>m,由于a[]是从小到大的有序序列,因此肯定a[j]大了,所以需要j往前移动一位。

#include<iostream>
#include<algorithm>
#define MAXN 100010
using namespace std;
int a[MAXN];

int main()
{
	int n,m;
	cin >> m >> n;
	for(int i = 0; i < n; ++ i)
		cin >> a[i];
	sort(a,a+n);
	int i = 0;
	int j = n - 1;
	int flag = 0;
	while(i < j)//不能加等号,否则会出现输出m/2的情况
	{
		int k = a[i] + a[j];
		if( k == m)
		{
			cout << a[i++] << " " << a[j--] << endl;//相等的时候记得i和j要更新,否则会一直循环 
			flag = 1;
		 } 
		else if( k > m)//说明a[j]太大了 
			-- j;
		else 
			++ i; 
	}	
	if(!flag)
		cout << "No Solution" << endl;
} 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页